Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
JACS Au ; 4(4): 1550-1569, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665642

ABSTRACT

Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(µ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.

2.
Cancer Cell Int ; 23(1): 292, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001420

ABSTRACT

BACKGROUND: Despite intensive developments of adoptive T cell and NK cell therapies, the efficacy against solid tumors remains elusive. Our study demonstrates that macrophage-based cell therapy could be a potent therapeutic option against solid tumors. METHODS: To this end, we determine the effect of a natural triterpene glycoside, cucumarioside A2-2 (CA2-2), on the polarization of mouse macrophages into the M1 phenotype, and explore the antitumor activity of the polarized macrophage. The polarization of CA2-2-pretreated macrophages was analyzed by flow cytometry and confocal imaging. The anti-cancer activity of CA2-2 macrophages was evaluated against 4T1 breast cancer cells and EAC cells in vitro and syngeneic mouse model in vivo. RESULTS: Incubation of murine macrophages with CA2-2 led to polarization into the M1 phenotype, and the CA2-2-pretreated macrophages could selectively target and kill various types of cancer in vitro. Notably, loading near-infrared (NIR) fluorochrome-labeled nanoparticles, MnMEIO-mPEG-CyTE777, into macrophages substantiated that M1 macrophages can target and penetrate tumor tissues in vivo efficiently. CONCLUSION: In this study, CA2-2-polarized M1 macrophages significantly attenuated tumor growth and prolonged mice survival in the syngeneic mouse models. Therefore, ex vivo CA2-2 activation of mouse macrophages can serve as a useful model for subsequent antitumor cellular immunotherapy developments.

3.
J Mater Chem B ; 11(33): 8007-8019, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37530140

ABSTRACT

Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (ß-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.


Subject(s)
Nitric Oxide , Osteogenesis , Rats , Humans , Animals , Cattle , Iron/pharmacology , Human Umbilical Vein Endothelial Cells , Skull
4.
ACS Chem Neurosci ; 14(16): 2922-2934, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37533298

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. ß-amyloid1-42 (Aß1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aß aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aß1-42. This study found that DNIC-COOH protected neuronal cells from Aß-induced cytotoxicity, potentiated neuronal functions, and facilitated Aß1-42 degradation through the NO-sGC-cGMP-AKT-GSK3ß-CREB/MMP-9 pathway.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Nitric Oxide/metabolism , Neuroprotective Agents/pharmacology , Alzheimer Disease/drug therapy , Iron/metabolism , Amyloid beta-Peptides
5.
Bioconjug Chem ; 34(9): 1688-1703, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37552618

ABSTRACT

The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.


Subject(s)
Diabetes Mellitus, Experimental , Metal-Organic Frameworks , Mice , Animals , Metal-Organic Frameworks/therapeutic use , Copper/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Zinc/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
6.
BMC Bioinformatics ; 24(1): 296, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480046

ABSTRACT

BACKGROUND: Statistical correlation analysis is currently the most typically used approach for investigating the risk factors of type 2 diabetes mellitus (T2DM). However, this approach does not readily reveal the causal relationships between risk factors and rarely describes the causal relationships visually. RESULTS: Considering the superiority of reinforcement learning in prediction, a causal discovery approach with reinforcement learning for T2DM risk factors is proposed herein. First, a reinforcement learning model is constructed for T2DM risk factors. Second, the process involved in the causal discovery method for T2DM risk factors is detailed. Finally, several experiments are designed based on diabetes datasets and used to verify the proposed approach. CONCLUSIONS: The experimental results show that the proposed approach improves the accuracy of causality mining between T2DM risk factors and provides new evidence to researchers engaged in T2DM prevention and treatment research.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Risk Factors , Learning , Research Design
7.
J Transl Med ; 21(1): 473, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461111

ABSTRACT

BACKGROUND: Interleukin-1 receptor antagonist (IL-1RA), a member of the IL-1 family, has diverse roles in cancer development. However, the role of IL-1RA in oral squamous cell carcinoma (OSCC), in particular the underlying mechanisms, remains to be elucidated. METHODS: Tumor tissues from OSCC patients were assessed for protein expression by immunohistochemistry. Patient survival was evaluated by Kaplan-Meier curve analysis. Impact of differential IL-1RA expression on cultured OSCC cell lines was assessed in vitro by clonogenic survival, tumorsphere formation, soft agar colony formation, and transwell cell migration and invasion assays. Oxygen consumption rate was measured by Seahorse analyzer or multi-mode plate reader. PCR array was applied to screen human cancer stem cell-related genes, proteome array for phosphorylation status of kinases, and Western blot for protein expression in cultured cells. In vivo tumor growth was investigated by orthotopic xenograft in mice, and protein expression in xenograft tumors assessed by immunohistochemistry. RESULTS: Clinical analysis revealed that elevated IL-1RA expression in OSCC tumor tissues was associated with increased tumor size and cancer stage, and reduced survival in the patient group receiving adjuvant radiotherapy compared to the patient group without adjuvant radiotherapy. In vitro data supported these observations, showing that overexpression of IL-1RA increased OSCC cell growth, migration/invasion abilities, and resistance to ionizing radiation, whereas knockdown of IL-1RA had largely the opposite effects. Additionally, we identified that EGFR/JNK activation and SOX2 expression were modulated by differential IL-1RA expression downstream of mitochondrial metabolism, with application of mitochondrial complex inhibitors suppressing these pathways. Furthermore, in vivo data revealed that treatment with cisplatin or metformin-a mitochondrial complex inhibitor and conventional therapy for type 2 diabetes-reduced IL-1RA-associated xenograft tumor growth as well as EGFR/JNK activation and SOX2 expression. This inhibitory effect was further augmented by combination treatment with cisplatin and metformin. CONCLUSIONS: The current study suggests that IL-1RA promoted OSCC malignancy through mitochondrial metabolism-mediated EGFR/JNK activation and SOX2 expression. Inhibition of this mitochondrial metabolic pathway may present a potential therapeutic strategy in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Diabetes Mellitus, Type 2 , Head and Neck Neoplasms , Metformin , Mouth Neoplasms , Humans , Animals , Mice , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Squamous Cell Carcinoma of Head and Neck , Cisplatin/pharmacology , Cell Line, Tumor , ErbB Receptors/metabolism , Metformin/pharmacology , Cell Proliferation , Cell Movement , SOXB1 Transcription Factors/pharmacology
8.
Sens Actuators B Chem ; 390: 133960, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37193120

ABSTRACT

The COVID-19 pandemic has become a global catastrophe, affecting the health and economy of the human community. It is required to mitigate the impact of pandemics by developing rapid molecular diagnostics for SARS-CoV-2 virus detection. In this context, developing a rapid point-of-care (POC) diagnostic test is a holistic approach to the prevention of COVID-19. In this context, this study aims at presenting a real-time, biosensor chip for improved molecular diagnostics including recombinant SARS-CoV-2 spike glycoprotein and SARS-CoV-2 pseudovirus detection based on one-step-one-pot hydrothermally derived CoFeBDCNH2-CoFe2O4 MOF-nanohybrids. This study was tested on a PalmSens-EmStat Go POC device, showing a limit of detection (LOD) for recombinant SARS-CoV-2 spike glycoprotein of 6.68 fg/mL and 6.20 fg/mL in buffer and 10% serum-containing media, respectively. To validate virus detection in the POC platform, an electrochemical instrument (CHI6116E) was used to perform dose dependent studies under similar experimental conditions to the handheld device. The results obtained from these studies were comparable indicating the capability and high detection electrochemical performance of MOF nanocomposite derived from one-step-one-pot hydrothermal synthesis for SARS-CoV-2 detection for the first time. Further, the performance of the sensor was tested in the presence of Omicron BA.2 and wild-type D614G pseudoviruses.

9.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797799

ABSTRACT

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

10.
Oncol Lett ; 25(1): 42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36589668

ABSTRACT

Lung cancer is one of the leading causes of cancer mortality worldwide. As it is often first diagnosed only when cancer metastasis has already occurred, the development of effective biomarkers for the risk prediction of cancer metastasis, followed by stringent monitoring and the early treatment of high-risk patients, is essential for improving patient survival. Cancer cells exhibit alterations in metabolic pathways that enable them to maintain rapid growth and proliferation, which are quite different from the metabolic pathways of normal cells. Fumarate hydratase (FH, fumarase) is a well-known tricarboxylic acid cycle enzyme that catalyzes the reversible hydration/dehydration of fumarate to malate. The current study sought to investigate the relationship between FH expression levels and the outcome of patients with lung cancer. FH was knocked down in lung cancer cells using shRNA or overexpressed using a vector, and the effect on migration ability was assessed. Furthermore, the role of AMP-activated protein kinase (AMPK) phosphorylation and disabled homolog 2 in the underlying mechanism was investigated using an AMPK inhibitor approach. The results showed that in lung cancer tissues, low FH expression was associated with lymph node metastasis, tumor histology and recurrence. In addition, patients with low FH expression exhibited a poor overall survival in comparison with patients having high FH expression. When FH was overexpressed in lung cancer cells, cell migration was reduced with no effect on cell proliferation. Furthermore, the level of phosphorylated (p-)AMPK, an energy sensor molecule, was upregulated when FH was knocked down in lung cancer cells, and the inhibition of p-AMPK led to an increase in the expression of disabled homolog 2, a tumor suppressor protein. These findings suggest that FH may serve as an effective biomarker for predicting the prognosis of lung cancer and as a therapeutic mediator.

11.
Pediatr Neonatol ; 64(1): 46-52, 2023 01.
Article in English | MEDLINE | ID: mdl-36089537

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is the most common neuropsychiatric disorder in schoolchildren. ADHD diagnoses are generally made based on criteria from the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. The diagnosis is made clinically based on observation and information provided by parents and teachers, which is highly subjective and can lead to disparate results. Considering that hyperactivity is one of the main symptoms of ADHD, the inaccuracy of ADHD diagnosis based on subjective criteria necessitates the identification of a method to objectively diagnose ADHD. METHODS: In this study, a medical chair containing a piezoelectric material was applied to objectively analyze movements of patients with ADHD, which were compared with those of patients without ADHD. This study enrolled 62 patients-31 patients with ADHD and 31 patients without ADHD. During the clinical evaluation, participants' movements were recorded by the piezoelectric material for analysis. The variance, zero-crossing rate, and high energy rate of movements were subsequently analyzed. RESULTS: The results revealed that the variance, zero-crossing rate, and high energy rate were significantly higher in patients with ADHD than in those without ADHD. Classification performance was excellent in both groups, with the area under the curve as high as 98.00%. CONCLUSION: Our findings suggest that the use of a smart chair equipped with piezoelectric material is an objective and potentially useful method for supporting the diagnosis of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Child , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/psychology , Diagnostic and Statistical Manual of Mental Disorders , Parents
12.
Biomedicines ; 10(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36289750

ABSTRACT

The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2 in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover, the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2.

13.
ACS Omega ; 7(26): 22896-22905, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811872

ABSTRACT

An efficient solid-phase method has been reported to prepare well-defined lysine defect dendrimers. Using orthogonally protected lysine residues, pure G2 to G4 lysine defect dendrimers were prepared with 48-95% yields within 13 h. Remarkably, high-purity products were collected via precipitation without further purification steps. This method was applied to prepare a pair of 4-carboxyphenylboronic acid-decorated defect dendrimers (16 and 17), which possessed the same number of boronic acids. The binding affinity of 16, in which the ε-amines of G1 lysine are fractured, for glucose and sorbitol was 4 times that of 17. This investigation indicated the role of allocation and distribution of peripheries for the dendrimer's properties and activity.

14.
J Cardiothorac Surg ; 17(1): 119, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35578261

ABSTRACT

OBJECTIVE: Survival from out-of-hospital cardiac arrest (OHCA) often depends on the effective and immediate use of automated external defibrillators (AEDs). Given that there have been few studies about AED use in China, the purpose of this study is to investigate the knowledge and attitudes regarding AED use among the Chinese public, then provide an effective suggestion for AED education strategies and legislation. METHOD: The online survey was conducted among Chinese participants of the First Aid eLearning courses in June 2020. RESULT: A total of 2565 (95.00%) surveys were completed, only 23.46% of respondents with non-medical related respondents reported having attended previous AED training courses. Regarding the basic knowledge of AEDs, few respondents (12.28%, n = 315) could answer all four questions correctly. 95.67% (n = 2454) were willing to learn AED use. Even if without the precondition of being skilled in AEDs, the female was more likely to rescue OHCA patients than the male (p = 0.003). Almost all respondents (96.65%) showed a strong willingness to rescue OHCA patients with training in using AEDs. The top four barriers to rescuing OHCA patients were lack of practical performing ability (60.47%), fear of hurting patients (59.30%), inadequate knowledge of resuscitation techniques (44.19%), and worry about taking legal responsibility (26.74%). CONCLUSION: Our study reflects a deficiency of AED knowledge among the general public in China. However, positive attitudes towards rescuing OHCA patients and learning AED use were observed, which indicates that measures need to be taken to disseminate knowledge and use of AEDs.


Subject(s)
Cardiopulmonary Resuscitation , Computer-Assisted Instruction , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Attitude , Cardiopulmonary Resuscitation/methods , Defibrillators , Female , First Aid , Humans , Male , Out-of-Hospital Cardiac Arrest/therapy , Surveys and Questionnaires
15.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35407339

ABSTRACT

Recently, we have shown that manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) conjugated with exendin-4 (Ex4) act as a contrast agent that directly trace implanted mouse islet ß-cells by magnetic resonance imaging (MRI). Here we further advanced this technology to track implanted porcine neonatal pancreatic cell clusters (NPCCs) containing ducts, endocrine, and exocrine cells. NPCCs from one-day-old neonatal pigs were isolated, cultured for three days, and then incubated overnight with MnMEIO-Ex4 NPs. Binding of NPCCs and MnMEIO-Ex4 NPs was confirmed with Prussian blue staining in vitro prior to the transplantation of 2000 MnMEIO-Ex4 NP-labeled NPCCs beneath the left renal capsule of six nondiabetic nude mice. The 7.0 T MRI on recipients revealed persistent hypointense areas at implantation sites for up to 54 days. The MR signal intensity of the graft on left kidney reduced 62-88% compared to the mirror areas on the contralateral kidney. Histological studies showed colocalization of insulin/iron and SOX9/iron staining in NPCC grafts, indicating that MnMEIO-Ex4 NPs were taken up by mature ß-cells and pancreatic progenitors. We conclude that MnMEIO-Ex4 NPs are excellent contrast agents for detecting and long-term monitoring implanted NPCCs by MRI.

16.
J Clin Med ; 12(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36614965

ABSTRACT

Age is an important determinant of heart rate variability (HRV) in healthy individuals. The incidence of arrhythmia is high in patients with mitral valve prolapse (MVP). However, the correlation of HRV in patients with MVP in different age groups is not well established. We presumed that increasing age would be prospectively associated with declining HRV measurement in MVP. Sixty patients with MVP and 120 control individuals were included and underwent 24 h HRV analysis. No significant difference was found in all parameters calculated in the time domain or in the frequency domain between the two groups. However, as patients' age increased, a significant time domain (SDNN, RMSSD, NN50, and pNN50) decline was found in the MVP group, but not in the control group. This suggests that patients with MVP may have autonomic nervous system involvement that increases the risk of arrhythmia and heart disease with increasing age.

17.
Nanomaterials (Basel) ; 11(11)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34835906

ABSTRACT

To specifically detect and trace transplanted islet ß-cells by magnetic resonance imaging (MRI), we conjugated manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) with exendin-4 (Ex4) which specifically binds glucagon-like peptide-1 receptors on the surface of ß-cells. The size distribution of MnMEIO and MnMEIO-Ex4 NPs were 67.8 ± 1.3 and 70.2 ± 2.3 nm and zeta potential 33.3 ± 0.5 and 0.6 ± 0.1 mV, respectively. MnMEIO and MnMEIO-Ex4 NPs with iron content ≤ 40 µg/mL did not affect MIN6 ß-cell viability and insulin secretion. Positive iron staining was found in MIN6 ß-cells loaded with MnMEIO-Ex4 NPs but not in those with MnMEIO NPs. A transmission electron microscope confirmed MnMEIO-Ex4 NPs were distributed in the cytoplasm of MIN6. In vitro MR images revealed a loss of signal intensity in MIN6 ß-cells labeled with MnMEIO-Ex4 NPs but not with MnMEIO NPs. After transplantation of islets labeled with MnMEIO-Ex4, the graft under kidney capsule could be visualized on MRI as persistent hypointense areas up to 17 weeks. Moreover, histology of the islet graft showed positive staining for insulin, glucagon and iron. Our results indicate MnMEIO-Ex4 NPs are safe and effective for the detection and long-term monitoring of transplanted ß-cells by MRI.

18.
ACS Omega ; 6(38): 24382-24396, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604621

ABSTRACT

The phenolic natural product magnolol exhibits neuroprotective properties through ß-amyloid toxicity in PC-12 cells and ameliorative effects against cognitive deficits in a TgCRND8 transgenic mice model. Its bioavailability and blood-brain barrier crossing ability have been significantly improved using the metal-organic framework (MOF) UiO-66(Zr) as a drug delivery system (DDS). To investigate the neuroprotective effects of the Zr-based DDS, magnolol and magnolol-loaded-UiO-66(Zr) (Mag@UiO-66(Zr)) were evaluated for inhibitory activity against ß-secretase and AlCl3-induced neurotoxicity. Due to the moderate inhibition observed for magnolol in vitro, in silico binding studies were explored against ß-secretase along with 11 enzymes known to affect Alzheimer's disease (AD). Favorable binding energies against CDK2, CKD5, MARK, and phosphodiesterase 3B (PDE3B) and dynamically stable complexes were noted through molecular docking and molecular dynamic simulation experiments, respectively. The magnolol-loaded DDS UiO-66(Zr) also showed enhanced neuroprotective activity against two pathological indices, namely, neutrophil infiltration and apoptotic neurons, in addition to damage reversal compared to magnolol. Thus, MOFs are promising drug delivery platforms for poorly bioavailable drugs.

19.
NPJ Aging Mech Dis ; 7(1): 24, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526491

ABSTRACT

Decision-making is considered an important aspect of cognitive function. Impaired decision-making is a consequence of cognitive decline caused by various physiological conditions, such as aging and neurodegenerative diseases. Here we exploited the value-based feeding decision (VBFD) assay, which is a simple sensory-motor task, to determine the cognitive status of Drosophila. Our results indicated the deterioration of VBFD is notably correlated with aging and neurodegenerative disorders. Restriction of the mushroom body (MB) neuronal activity partly blunted the proper VBFD. Furthermore, using the Drosophila polyQ disease model, we demonstrated the impaired VBFD is ameliorated by the dinitrosyl iron complex (DNIC-1), a novel and steady nitric oxide (NO)-releasing compound. Therefore we propose that the VBFD assay provides a robust assessment of Drosophila cognition and can be used to characterize additional neuroprotective interventions.

20.
BMC Musculoskelet Disord ; 22(1): 559, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34144679

ABSTRACT

BACKGROUNDS: Surgical reduction for high-grade spondylolisthesis is beneficial for restoring sagittal balance and improving the biomechanical environment for arthrodesis. Compared to posterior total laminectomy and long instrumentation, anterior lumbar inter-body fusion (ALIF) is less invasive and has the biomechanical advantage of restoring the original disk height and increasing lumbar lordosis, thus improving sagittal balance. However, the application of ALIF is still limited in treating low-grade spondylolisthesis. In this study, we developed a new technique termed anterior cantilever procedure to directly reduce the slippage of high-grade lumbosacral spondylolisthesis. The purpose of our study was to investigate the surgical outcomes of the anterior cantilever procedure followed by ALIF and posterior mono-segment instrumented fixation in high-grade spondylolisthesis. METHODS: All patients with high-grade spondylolisthesis who underwent anterior cantilever procedure followed by anterior lumbar inter-body fusion (ALIF) and posterior mono-segment instrumented fixation between November 2006 and July 2017 were enrolled in our study. The slip percentage, Dubousset's lumbosacral angle, pelvic tilt, sacral slope, pelvic incidence, and sagittal alignment were measured pre-operatively and postoperatively at the last follow-up. Surgery time, blood loss, complications, and hospital stay were also collected and analysed. RESULTS: A total of 11 consecutive patients with high-grade spondylolisthesis patients were included and analysed. All of the high-grade spondylolisthesis in our series occurred at the L5-S1 level. The median age was 37 years, and the median follow-up duration was 36 months. The average slip reduction was 30% (60 to 30%, P < 0.01), and the average correction of Dubousset's lumbosacral angle was 13.8° (84.1° to 97.9°, P < 0.01). The median intra-operative blood loss was 300 mL. All patients attained improved sagittal balance after the operation and achieved solid fusion within 9 months after surgery. No incidences of implant failure, permanent neurological deficit, or pseudarthrosis were recorded at the last follow-up. CONCLUSIONS: Anterior cantilever procedure followed by ALIF and posterior mono-segment instrumented fixation is a valid procedure for treating high-grade spondylolisthesis. It achieved a high fusion rate, partially reduced slippage, and significantly improved lumbosacral angle, while minimizing common complications, such as pseudarthrosis, nerve traction injury, excessive soft tissue dissection, and blood loss in posterior reduction procedures. However, posterior instrumentation is still required to the structural stability in the ALIF procedure. LEVEL OF EVIDENCE: IV.


Subject(s)
Lordosis , Spinal Fusion , Spondylolisthesis , Adult , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Lumbosacral Region/diagnostic imaging , Lumbosacral Region/surgery , Retrospective Studies , Spinal Fusion/adverse effects , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...